

BEHAVIOURAL TESTING IN RATS

Impact of Omega-3 Fatty Acids Supplementation and Exercise on Locomotor Activity, Exploratory Activity and Anxiety

Lívia Gajdošová

BEHAVIOURAL TESTING

To understand

- how the brain supports sensorimotor function, cognition, emotion,...
- how brain function is altered in various disease states including neurodegenerative and neuropsychiatric disorders

Operant Conditioning/Reward		Learning and Memory	Affective Behavio	rs Ser	sorimotor Testing	
Intravenous/Intracranial Self-Administration			Elevated Plus Maze	SH	SHIRPA Primary Screen	
Food Self-Administration			Light Dark Box		Rotarod	
Water/Sucrose Self-Administration			Novelty Suppressed Fee	eding	Balance Beam	
Operant Touch Screens			Forced Swim Test		Pole Test	
Intracranial Self-Stimulation (coming soon)			Tail Suspension Test	t i	Grip Strength	
		T-Maze/Y-Maze	Marble Burying Tes	t	Catwalk	
		Morris Water Maze	Aggression		Hot Plate	
		Barnes Maze	Social Interaction		Von Frey Test	
		Radial Arm Maze	Passive Avoidance		Tail Immersion	
		Novel Object Recognition		Open Field		
-		Novel Object Location	Ultrasonic Vocalization		ation	
		Social Recognition				
		Social Transmission of Food Preference		-		
	ł.	Fear Conditioning		100		
		Pre-Pulse Inhibition (startle response)				
C Mary	1 2	Taste Aversion				
Sucrose Preference Test					ALL	
Conditioned place preference/aversion						

OPEN FIELD TEST

- based on natural exploratory instincts in a novel dark open field
- general locomotor activity levels, exploration, and anxiety

open field test chamber

OPEN FIELD TEST

Apparatus

- 1. Habituation phase very important!
- 2. Testing phase
 - 10 minutes movement is recorded via EthoVision software

Outputs

- distance moved represents exploration activity and general locomotor activity level
- cumulative time and frequency to center represent anxiety levels

(100 cm × 100 cm × 40 cm)

NOVEL OBJECT RECOGNITION TEST

- uses reaction to a novel object as an avenue to evaluate dorsal hippocampal function
- rats should investigate the novel object

NOVEL OBJECT RECOGNITION TEST

3 separate phases on 3 consecutive days

- 1. Habituation phase
 - exposure to the open field for 10 minutes
- 2. Familiarization phase
 - exposure to 2 identical objects for 10 minutes
- 3. Testing phase
 - exposure to a familiar object from the previous phase and a novel object for 10 minutes

Outputs

- total exploration activity time spent interacting with both objects
- time of interaction with novel object evaluation of memory and learning

ANIMALS

Male Wistar rats (300-700g) randomly allocated to groups (6 rats/group)

- 2 age groups
 - 1. adult rats (AR) (9-10 months) (n=42)
 - 2. old rats (OR) (24-25 months) (n=40)

TREATMENT

1ST WEEK: HABITUATION			
2ND WEEK: HANDLING			
1ST PHASE	SUPPLEMENTATION ONLY (3 WEEKS)	NEUROBEHAVIOURAL TESTING	ENDING POINT - DECAPITATION
2ND PHASE	SUPPLEMENTATION (3 WEEKS) THEN SUPPLEMENTATION + EXERCISE (4 WEEKS)	NEUROBEHAVIOURAL TESTING	ENDING POINT - DECAPITATION

RESULTS OPEN FIELD TEST

- significantly lower in almost all groups of old rats
- no significant changes across treatments, only significant decrease in O1EX vs. C6+ex

Graph 1: Velocity - mean

(3w), then ω -3 FA in the indicated dose + exercise (4w); *p<0.05; \$ p<0.05

Graph 2: Distance moved - total

C2 – placebo/daily (3w),

 $O1 - \omega$ -3 FA - 160 mg/kg body weight (BW) daily (3w),

 $O2 - \omega$ -3 FA - 320 mg/kg BW daily (3w), C6 -placebo /daily (7w),

C6+Ex – placebo/daily (3w), then placebo/daily + exercise (4w),

O1Ex – ω -3 FA - 160 mg/kg BW daily (3w), then ω -3 FA in the indicated dose + exercise (4w),

O2Ex - ω -3 FA - 320 mg/kg BW daily (3w), then ω -3 FA in the indicated dose + exercise (4w); ***p<0.05**; \$ **p<0.05**

- significantly lower in almost all groups of old rats
- no significant changes across treatments, only significant decrease in O1EX vs. C6+ex

- no significant differences old rats vs. adult rats
- O2 significantly higher in adult rats vs. C2, also vs. O2EX
- C6+EX significantly higher frequency in adult rats vs. C6, but also vs. O1EX

Graph 3: In center zone - Frequency

C2 - placebo/daily (3w),**O1** – ω -3 FA - 160 mg/kg body weight (BW) daily (3w), $O2 - \omega$ -3 FA - 320 mg/kg BW daily (3w), C6 – placebo /daily (7w), C6+Ex – placebo/daily (3w), then placebo/daily + exercise (4w), **O1Ex** – ω -3 FA - 160 mg/kg BW daily (3w), then ω -3 FA in the indicated dose + exercise (4w), **O2Ex -** ω -3 FA - 320 mg/kg BW daily (3w), then ω -3 FA in the indicated dose + exercise (4w); *p<0.05; \$ p<0.05

- O2 significantly higher in adult rats vs. C2, also vs. O2EX
- C6+EX significantly higher amount of time in center zone in adult rats vs. C6

Graph 4: In center zone – **Cumulative duration**

C2 - placebo/daily (3w),**O1** – ω -3 FA - 160 mg/kg body weight (BW) daily (3w), $O2 - \omega$ -3 FA - 320 mg/kg BW daily (3w), C6 – placebo /daily (7w), **C6+Ex** – placebo/daily (3w), then placebo/daily + exercise (4w), **O1Ex** – ω -3 FA - 160 mg/kg BW daily (3w), then ω -3 FA in the indicated dose + exercise (4w), **O2Ex -** ω -3 FA - 320 mg/kg BW daily (3w), then ω -3 FA in the indicated dose +

SUMMARY

- age significantly reduces locomotor activity
- omega-3 FA supplementation seem to have positive effect on anxiety in adult rats, but not in combination with exercise
- exercise alone significantly improves anxiety in adult rats

RESULTS NOVEL OBJECT RECOGNITION TEST

- old vs. adult significantly lower in C2, O2, C6+ex, O2EX
- 02 vs. 02EX

Graph 5: Total exploration activity in trial 1

C2 – placebo/daily (3w), O1 – ω -3 FA - 160 mg/kg body weight (BW) daily (3w), O2 – ω -3 FA - 320 mg/kg BW daily (3w), C6 – placebo /daily (7w), C6+Ex – placebo/daily (3w), then placebo/daily + exercise (4w), O1Ex – ω -3 FA - 160 mg/kg BW daily (3w), then ω -3 FA in the indicated dose + exercise (4w), O2Ex - ω -3 FA - 320 mg/kg BW daily

(3w), then ω -3 FA in the indicated dose + exercise (4w); ***p**<**0.05**; \$**p**<**0.05**

Graph 6: Total exploration activity in trial 2

C2 – placebo/daily (3w),

O1 – ω -3 FA - 160 mg/kg body weight (BW) daily (3w),

 $\label{eq:constraint} \begin{array}{l} \textbf{O2} - \omega \text{-} 3 \ \text{FA} \text{-} 320 \ \text{mg/kg} \ \text{BW} \ \text{daily} \ (3w), \\ \textbf{C6} - \text{placebo} \ \text{/daily} \ (7w), \end{array}$

C6+Ex – placebo/daily (3w), then placebo/daily + exercise (4w),

O1Ex – ω -3 FA - 160 mg/kg BW daily (3w), then ω -3 FA in the indicated dose + exercise (4w),

O2Ex - ω -3 FA - 320 mg/kg BW daily (3w), then ω -3 FA in the indicated dose + exercise (4w); ***p<0.05**; \$ **p<0.05**

 old vs. adult – significantly lower in O1, O2, C6, C6+ex, O1EX, O2EX

- Old vs. Adult C6, O2EX
- O2EX spent significantly more time investigating the novel object than O2
- C6 significantly more time investigating the novel object than C6+ex and O1EX

Graph 7: Absolute time difference between investigating the sample and novel C_{2} placebo/daily (3w), O1 - ω -3 FA - 160 mg/kg body weight (BW) daily (3w), O2 - ω -3 FA - 320 mg/kg BW daily (3w), C6 - placebo /daily (7w), C6+Ex - placebo/daily (3w), then placebo/daily + exercise (4w), O1Ex - ω -3 FA - 160 mg/kg BW daily (3w), then ω -3 FA in the indicated dose + exercise (4w), O2Ex - ω -3 FA - 320 mg/kg BW daily (3w), then ω -3 FA in the indicated dose +

exercise (4w); ***p<0.05; \$ p<0.05**

the higher the time difference, the more time the rat spent exploring the new object

SUMMARY

- age decreases exploration activity, significantly in some groups
- effect on memory is not definite

CONCLUSION

- ageing affects locomotor activity and exploration activity, but not anxiety
- effect of omega-3 FAs supplementation potential to positively affects anxiety, but not memory
- effect of combined intervention potential to positively affects memory, but not anxiety

THANK YOU FOR YOUR ATTENTION!

